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Intermediate Boundary Conditions 
for Time-Split Methods Applied to 

Hyperbolic Partial Differential Equations* 
By Randall J. LeVeque** 

Abstract. When time-split or fractional step methods are used to solve partial differential 
equations numerically, nonphysical intermediate solutions are introduced for which boundary 
data must often be specified. Here the appropriate boundary conditions are derived for 
splittings of hyperbolic problems into subproblems with disparate wave speeds. Numerical 
experiments are performed for the one-dimensional shallow water equations, a quasilinear 
.svstem with inflow-outflow boundaries. Stability of the initial-boundary value problem is 
demonstrated for boundary conditions of the type derived here. 

1. Introduction. The use of time-split methods for numerically solving hyperbolic 
partial differential equations which can be split into subproblems with disparate 
wave speeds has been studied by LeVeque and Oliger [5]. Here we consider in 
greater depth the problem of properly specifying boundary conditions for the 
nonphysical intermediate solutions which arise in such schemes. More details and 
some applications of similar ideas to other partial differential equations may be 
found in LeVeque [4]. 

Consider a one-dimensional quasilinear system of the form 

(l .l) a~~~~~~t A A(x, t, U) Ux, 
where A is an r x r matrix with real eigenvalues for each x, t, and u. A time-split 
method may be advantageous if A is of the form 

(1.2) A = At + Ash 

where the problems 

(1 .3a) Ut Af ux, 

and 

(1 .3b) a, =A Au, 
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can each be solved more efficiently than (1.1). Typically, As has small eigenvalues so 
that solutions to (1.3b) consist of slow waves, while Af has large eigenvalues but 
simple structure. For example, Af may be a constant matrix for which (1.3a) can be 
solved exactly on the computational grid. Alternatively, Af may be sparse relative to 
A, so that small time steps can be taken more efficiently on (1.3a) than on the full 
problem (1.1). Various examples are given in [4] and [5]. 

Let U(/4? denote the grid function approximation to the solution u(xm, t"), where 
Xrn = mh and t,, = nk. For the time-split method, we apply the second-order 
accurate Strang splitting [7] to the subproblems (1.3). The numerical method for 
(1.1) is then 

U* = Qf (tn + 2 k, tj)U", 

(1.4) U** = Qs(tn+ , tn) U 

Un+1 = Qf (t tn + k)U** 

where, for example, Qf (tn + 2k, tn) is some approximate solution operator for the 
problem (1.3a) from time t, to time t, + k. 

When the time-split method is used to solve an initial-boundary value problem 
(IBVP), it is necessary to specify boundary conditions for the nonphysical inter- 
mediate solutions U* and U**. In [5], it was shown how this could be done for 
constant coefficient systems at an inflow boundary. Here we show how the same 
techniques can be applied to handle more general IBVPs. In Section 2, boundary 
conditions for a variable coefficient system at an inflow boundary are computed. In 
Section 3, inflow-outflow boundary conditions are derived for constant coefficient 
problems. These ideas may be combined to handle general problems. In Section 4, 
the one-dimensional shallow water equations are considered as an example. This is a 
quasilinear system of equations with inflow-outflow boundaries. 

Stability theory is discussed in Section 5. Assuming that the time-split method 
(1.4) is stable for the Cauchy problem (with domain -x < x < x), it is shown that 
any of the boundary conditions derived here give a stable scheme for the IBVP. 

For convenience, we will assume that Qf is the exact solution operator for the 
problem (1.3a), while Qs consists of a single step of some finite-difference method. 
Then U* and U** are the only intermediate solutions that arise. Other intermediate 
solutions which may arise, for example, if Qf consists of several steps of a 
finite-difference method with time step smaller than k/2, can be handled similarly. 

We will also assume that I1Af1I = (9(1) while IIAsII = (9(e) with ? << 1. Then the 
second-order accurate scheme Qs will in fact generally be (9(8k2) accurate on 
ut= Asu. It can be shown that the time-split method (1.4) is then (9(ek2) accurate 
on the full Cauchy problem (1.1) [4]. By contrast, the use of a second-order accurate 
method directly on the unsplit problem (1.1) would typically be only (9(k2) accurate. 

In order to maintain the (9(8k2) accuracy of the time-split method on IBVPs, it is 
necessary to derive boundary conditions which are locally (9(8k2) accurate. The 
approach we take generates a series expansion for the correct boundary conditions 
which can be truncated appropriately to achieve this accuracy. 

We recall the basic idea used to derive intermediate boundary conditions [4], [5]. 
Each step of the split method (1.4) is an approximate solution to one of the 
equations in (1.3). These equations differ from the original equation (1.1), and we 
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attempt to derive appropriate boundary conditions for these equations based on the 
given boundary data for (1.1). 

To avoid confusion, it is useful to introduce different variables to denote solutions 
to (1.3). For example, the intermediate solution U* in (1.4) is an approximation to 
u*(x, t,1 + k/2), where u* satisfies (1.3a), 

(1.5) Ut AfUX1 

for t > t,, with initial conditions 

(1.6) u*(x, t,) = u(x, t"). 

It is clear that the new variable u*(x, t) evolves differently than the true solution 
u(x, t) which satisfies (1.1). Consequently, the boundary conditions for u* will differ 
from those given for u, and determining these new boundary conditions will allow 
us to specify U* at the boundary. 

A simple example of this procedure for constant coefficient problems was given in 

[5]. 

2. Variable Coefficient Systems-Inflow Boundaries. Consider the quarter-plane 
problem 

(2.1 a) U, A A(x, t) ux, x '> O. t >' O. 

with initial conditions 

(2.1b) u(x, O) = f(x), 

and inflow boundary conditions 

(2.1c) u(O, t) = g(t). 

Here, A(x, t) is an r X r matrix with negative eigenvalues. Assume the matrix A is 
split as in (1.2) and, for simplicity, suppose that Af is constant while As = AS(x, t). 
It should be clear from this discussion how to handle problems in which Af is also 
variable as well as quasilinear problems in which A also depends on u. 

We wish to determine appropriate boundary conditions at x = 0 for the inter- 
mediate solutions U* and U** in (1.4). First, consider U*. Suppose that at time to 

Un',' = u(x,,, t,) for m = 0, 1.... Since we have assumed that Qf is the exact 
solution operator for (1.3a), it follows that, away from the boundary at least, 

U,*, = U*(xn, t,, + 'k) where u*(x, t) is the solution to the problem 

(2.2a) u*(x, t) = A u*(x, t), x > 0, t > t,, 

with initial conditions 

(2.2b) u*(x, tj) = u(x, t,7). 

More generally, if Qf is a second-order accurate approximation to the exact solution 
operator, then 

Um* = U*(Xn, t,, + ok) + (9(k3). 

The problem of determining the correct boundary conditions for U* can be replaced 
by that of determining the correct boundary conditions for the continuum function 
U* solving (2.2). These can be calculated in terms of the boundary data g(t) in 
(2.1c). 
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For X> O, we have 

(2.3) u*(O, to, + T) = u*(O, tj) + Tu*(O, to?) + d 2u,,(O, to?) + 9(T3). 

Using (2.2a), this becomes 

(2.4) u*(O, to, + T) = u*(O, tj) + TA U*(O, to?) + Ad 2A2u*, (O, to?) + O( 3). 

Since the initial conditions (2.2b) hold for all x, that relation can be differentiated 
with respect to x, giving u*(x, tj) = ux(x, tj) and similarly for higher derivatives. So 
(2.4) becomes 

(2.5) u*(O, to, + T) = u(O, tj) + TAfUx(0 tn) + 2A2Uxx(O, tj?) + ( T 3)- 

Using (2.1a), we can reexpress this in terms of time-derivatives of u along the 
boundary. We have 

ux(O, t1)= A-1(O, toj)u,(O, to?) 

and by differentiating (2.1a) with respect to both x and t and solving for uxx, we 
find that 

UXX = A-1 [A-1(u ,,- AA-lut) - AXA-lu,]. 

Higher-order derivatives can also be computed. Using these expressions in (2.5), we 
obtain 

U*(O, t,? + T) = U(O, tn) + TAfA1(O, t,J)u,(O, tn) + 'r2AtA1(O, tf7) 

(2.6) x [A-1(0, tn ) U,, (O, tn )-(A-1(0, tn) A(O, tn) + Ax(O, tn)) 

XA 1(O. tn )U,(O. ton)] 

+ (T T3) . 

We can replace u(O, tn) by g(tn), giving an expression for the boundary conditions 
u*(O, to1 + T) in terms of the boundary data g(t) (and its derivatives). Evaluating this 
at T = +k gives a series expansion for the boundary data UO = u*(0, t + 2k). This 
must, in general, be truncated at some point. In many cases, it can also be simplified. 

For simplicity, we will first assume that K(A) = 0(1), where K(A) is the condition 
number of the matrix A defined by K(A) = IAil A-111. This means, in particular, 
that all eigenvalues of A are 0(1) and hence, all waves in the original problem travel 
with speeds which are 0(1). This is the case, for example, in the one-dimensional 
shallow water equations discussed in Section 4. 

In practice, splitting is often used in situations where A also has O(8) eigenvalues, 
so that waves travel at disparate speeds in the original problem. We will discuss this 
case later in this section. 

Recall that we desire an O(8k2) accurate approximation to the boundary data 
u*(O, t,7 + k/2). We wish to simplify and truncate (2.6) to obtain this accuracy. In 
the present case, with A1 constant, AX and At are 0(?), SO we can drop several 
terms in (2.6), leaving 

(2.7) u*(0, tn + k/2) = g(tn) + IkAfA-1(O, tn)g'(tn) 

+ fk2AfA2(O. tn)g"(tn) + O(8k + k3). 
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Moreover, since all eigenvalues of A are 0(1), the matrix AS must be of full rank, so 
that A`1 exists and K(AJ') = 0(1). Then, 

A A-1(0, t) = [(Af + As)AI1 l = [I + AAfjl 1= I + O(e) 

and, similarly, 

AIA-JA(0,t,1) = I + 0(e) 

for j = 1, 2 .... Factoring an identity matrix out of AfA-J(0, tj) in each term of 
(2.7) we obtain the (9(ek2) accurate boundary conditions 

(2.8) UO = g(t, + 1k) + 'k(AfA-1(0, t) - I)g'(t,,). 

Boundary conditions for U** can be determined similarly. The easiest way to 
proceed is to work backwards from time t"+ . We define u** as the solution to 

(2.9a) U** = A U**, x > 0, t < t 

with "initial" conditions 

(2.9b) u**(x, t,,+1) = u(x, t,,+1), x > 0. 

Then, U** * u**(t,?1 - lk). Proceeding as before, we find an expression analo- 
gous to (2.6): 

(2.10) u**(O, t,,+, - = u(O, tn+l) - TAfA-(O, t,1+?)ut(o, t,7+?) 

2 fat T 0 fA I~l~utr(O tn+l) + T(e2T2 + T3). 

Corresponding to (2.8), we have the boundary condition 

(2.11) uO* = g(tl1? - 'k) - lk(AfA-1(O, t,1+1) -I 

Finally, we note that data for points near the boundary may be determined 
similarly. For example, if boundary conditions b7* for 0 < j < p are needed, they 
can be obtained as approximations to 

u*(jh, t,, + r) = u*(O, t,, + T) +jhu*(O, t,, + r) + ( jh)2u*.(0,t,1 + T) + 

= u(0, t,) + (A? + jhI) ux(0, t,) + (TAj + jhI )2UXX(0 ti) + 

From here, we can proceed as from (2.5), to again obtain an expression in terms of g 
and its derivatives. 

Now suppose that the original problem has waves traveling at disparate speeds, so 
that the matrix A has some eigenvalues which are 0(1) and some which are 0(E). In 
this case, IIA-111 = 0(1/c). However, if we restrict our attention to smooth solutions 
and assume that aju = 0(1) for all j, then the expansions (2.5) and (2.6) are still 
valid. Note that (2.6) involves the matrix A1, but only in expressing x-derivatives in 
terms of t-derivatives and so, by our smoothness assumptions, the factors multiply- 
ing powers of T are all 0(1). Simplifying (2.6) may be more complicated, however. 
For example, Af no longer has full rank and so AjA-4 i I + 0(e). 

For simplicity, we will assume that the system is partitioned into fast and slow 
components at the boundary x = 0, i.e., 

(2.12) A(O t) =Ai(0,t) A0t 
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where K(A1) and K(A2) are both 0(1). The additional complications which arise if 
coupling terms are present can also be handled. Consider a splitting in which Af is 
again constant, and of the form 

(2.13a) A - [Alf 0] 

so that 

(2.13b) A (O0) -[ AiS(O0t) 1 

Then, if Ax and At are again 0(r), we easily compute that 

A (I O] 
A 

[A-1fl(, t) -I 0] 

and 

A~u = {[ 0] + 0(rC)}ut f Xx ([ 0 0] ())t 

Partitioning g(t) = [g1(t), g2(t)]1, we obtain an expression analogous to (2.8) which 
again gives O(Ek 2) accurate boundary conditions: 

= [g1(tn + k/2) k[ ( A1Aj1(O, tj,) -I)g{( ta)] g 2(tn,) J 2 [ 0 

Notice that the second component of UO is simply g2(tn). This is natural, since with 
the splitting (2.13), the second component of u remains unchanged in the first step 
of the split method. 

If coupling terms between fast and slow components are present at the boundary, 
then further complications arise, but can also be handled. To get an indication of 
what happens without unnecessary complication, we consider only the constant 
coefficient system of two equations 

(2 .14) [ -1 -e- ] u (O. t) = g( t) - 

We write u = (v, w)T. If the solution is to have bounded x-derivatives of all orders, 
then the boundary conditions must be of the form 

(2.15) g(t) = 
1 W 

where the gj(t) have bounded derivatives. Taking the natural splitting with Af = 

[-1 0], we find that 

axu AfAaiu = [1 (1 + e +f a 

- ([)(t) -(E + E2 + +Ej)g. j'Ot) 

Notice that even though AfA-J = 0(E--J1), the required smoothness gives an 0(1) 
expression for the terms in (2.5). 
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For this problem we can obtain O(Ek2) accurate boundary conditions by taking 

( 2 . 16) U* = [ gl ( t ) ] + l21[ ) ( t -_g2 (Etn) + lk 2 [1 (tn)] 

[g2(tn + k/2) - 4keg( et)] 
= 1 [ gk2 ( z',-g ] +0(ck2). 

In fact, for this simple problem we can determine the exact boundary condition 
U*. Since 1 + r + * + j?i = r(1 - Ei)/(8 - 1), we find that 

AX fa~v = a /v - E l-?iaJW 

so that 

v* (0, t,, + k/2) = v (0, tn) + IkAfvo + f + * 

(2.17a) = v(0, tn + k/2) -8[W(0, tn + k/2) -w(O, tn + k/2e)]/(E- 1) 

1g(tn + k/2) - [g2(e(tn + k/2)) -g2(Ftn + k/2)]/(e - 1), 
while 
(2.17b) w*(0, tn + k/2) = w*(O, tn) = 92(etn) 

Notice that the boundary condition for v*(O, tn + k/2) involves g2(8(tn + k/2c)), 
i.e., the boundary condition for w(O, t) at the greatly advanced time tn + k/2e, and 
hence is very nonlocal. By following characteristics in the problems for u and u* (as 
was done in [5] for a similar problem), one can verify that these are in fact the 
correct boundary conditions. Also notice that (2.16) uses more local boundary 
information, but is able to approximate (2.17) to 0(8k 2) due to the slow variation of 
w(0, t). 

3. Inflow-Outflow Boundaries. We next consider the case in which A has both 
positive and negative eigenvalues. For simplicity we only treat the constant coeffi- 
cient problem and assume that K(A) = 0(1) in order to isolate the essential new 
features which arise. More general problems can be handled by combining the 
techniques used here with those of Section 2. 

Consider ut = Aux for x > 0, t > 0 and assume that A is in block-diagonal form 

(3.1) A [ A 0] 

with the eigenvalues of Al negative and those of A"' positive. A1 and A, are 
assumed to have the same form and are partitioned similarly into blocks, e.g., A, 
and A,,. Partition u = (v, w)Tconformally with A. Then at x = 0, the elements of v 
are inflow variables while those of w are outflow variables. The boundary conditions 
are assumed to be of the form 
(3.2) v(0, t) = Sw(0, t) + g(t), 

where S is a constant matrix and g is a given function. We now split A as 
A = Af + AS, with Af and As again block-diagonal. Moreover, we suppose that the 
eigenvalues of A, are negative and those of A,, positive. 

We consider only the problem of computing U0 and suppose, as usual, that Qf is 
the exact solution operator exp(kA3ax). Then W0 is determined from the interior 
and we need only specify Vo . 
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If Qf is not the exact solution operator, then it is necessary to specify WO as well. 
Since WO approximates the outflow variables satisfying w,* = AIw*, it is typically 
easy to derive a one-sided scheme for this equation which can be applied to obtain 
Wo from W" j > 0. 

To determine VO*, we introduce u* = (v*, w*) which solves the subproblem 
Ut* = Afu * and find as usual that 

u*(O, tt, + k/2) = u(O, tn) + 4kAfA-'uJ(O, tn) + 8k2AfA2u ( tf) + 

Again using A2A-2 = I + 0(E), we obtain the O(ek2) accurate boundary condi- 
tions 

(3.3) UO* = u(O, tn+1/2) + 4k(AfA-1-I)ut(otn) 
Introducing the matrix 

B = A= [A(A 1 A- (A=)- - [% B22] 

we can rewrite (3.3) as 

(3.4a) VO* = v (O, tn + 1/2) + 2 kBjvlt (O, tj), 

(3.4b) WO* = w(O, tn+ 1/2) + 1kB22wt(O t,1) 

By differentiating the boundary conditions (3.2) we obtain 

Vt(O. tfl) = Swt(O, tfl) + g'(tj). 
Using this and (3.2), (3.4a) becomes 

(3.5) JSO* = [Sw(O, tn+1/2) + g(tn+1/2)] + 2 kB1[Swt(O,tfl) + g'(tn)] 

Recall that WO* is already known. We can thus solve (3.4b) for w(O, t,+ 1/2). 

Using this in (3.5), yields 

VO3 = S[WO*- kB22w] + g(t,+/2) + kB11 [ Swt (0 t,1) + g'(t,)] 
= SWO* + g(tn+112) + 1 k[Bllg'(t,1) +(B11S - SB22)w(0,t)]. 

The w, term must in general be approximated by a finite difference, 

(3.7) JO = SWO + g(tn+1/2) + 4[kBl1g'(tn) +(B11S - SB22)(W 0 - 

Alternatively, we can replace wt by AIIw and approximate this by a finite difference 
of W at time tn. This approach is particularly useful when more terms of the series 
are kept and higher-order derivatives must be approximated. 

The use of such boundary conditions is illustrated in the next section, where the 
one-dimensional shallow water equations are considered. 

Boundary data at points near the boundary can be found in a similar manner. For 
example, if data VJ"+1 is needed for some 0j < p, we can expand v in x-deriva- 
tives, switch to t-derivatives along the boundary, convert these to t-derivatives of w 
using vt = Swt + g', and finally switch back to x-derivatives of w, obtaining 

(3.8) v(j, tn+J) = v(0, tn+J) +jh(A')'[SA wx(O, tn+J) + 9 (tn+J) 

+ 2 (jh)2(AI)-2[S(All )2wxx(O, ttl+l) + g,(t,1+l)] + 

These boundary conditions are suggested by Goldberg and Tadmor [1], [2] for 
general inflow-outflow problems. 
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4. The Shallow Water Equations. In order to illustrate the derivation of inter- 
mediate boundary conditions for a specific example, we will consider the one-dimen- 
sional shallow water equations on a strip, which we write in symmetric form as 

(4.1) [0 b=K 2 P 2][] O I x1,t>'O 

Here u(x, t) is the velocity and 4(x, t) = 2 gH(x, t), where H is the height of the 
fluid and g is the gravitational constant. We will make the realistic assumption that 
u is small compared to 0 and that variations in 4 are small compared to some mean 
value 4p: 

(4.2) P - 
(AO I < -(jO, U I <j &E 

with - < 1. Moreover, we consider only smooth solutions for which ux, ox and 
higher derivatives are also !(e4o). 

For computational convenience we change variables and compute in the char- 
acteristic variables p and a defined by 

p(x, t) = u(x, t) + k(x, t), a(x, t) = u(x, t) - O(x, t). 
We can always transform back to find u = (p + a)/2 and 4 = (p - a)/2. Rewrit- 
ing the differential equation (4.1) in terms of p and a, gives 

(43) [a]i[a4 [ p + 3][a ]x 
Under the assumption (4.2), the variable p always flows to the right while a always 
flows to the left. Appropriate boundary conditions are thus 
(4.4) p(O, t) = a0a(O, t) + go(t), a(1, t) = alp(1, t) + gl(t). 
For concreteness, we will specify 4p(O, t) = g(t) at x = 0 and use nonreflecting 
boundary conditions at x = 1. These boundary conditions can be written in the 
form (4.4) as 

(4.5a) p(O, t) = a(0, t) + 2g(t), 
(4.5b) (1,t) = 

We will split the coefficient matrix A appearing in (4.3) as A = Af + As with 

I -0 ?0 A _ 3p + a - 200 ? 
Af 2[ 0 (o : As 4 0 p + 3a+200 

Then 1IAS =O(e), while vt = A1 V is a constant coefficient problem for which the 
exact solution operator is easily computed. Taking k = 4h/lo and denoting the 
grid-function approximations to p and a by R and S. respectively, the time-split 
method (1.4) on 0 < x < 1 with h = 1/N is simply 

R*m = R' _1, m = 1, 2,..., Ng 
S. * = Sm +Ig m = -1, O9.. .., N - 1 

[R = Qs(k)[ 
R ] m = 0. 1, ... ., N - 1 

Rn+1 = R**1, m = 1, 2,.. ., AN, 
+ = S,1 m = 01, ..., N-1. 

Here Qs(k) is a second-order accurate scheme (say Lax-Wendroff) for the problem 
v,-= Av. Such a scheme will in fact generally be 0(c2k2) accurate on this problem, 
the two factors of e arising because the coefficients As are 0(e) and, in addition, 
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derivatives of the solution are 0(r). The time-split method remains O(E2k 2) accurate 
for the full problem (4.3) [5]. By contrast, applying Lax-Wendroff directly to the 
unsplit problem is only 0(,ek 2) accurate (derivatives of the solution are still 0(r), 
but the coefficients are 0(1)). 

At the left boundary we need to specify R*, R*1, and R". Note that by 
specifying R*1 and computing S*1 we avoid having to specify any boundary values 
for R**. 

The given boundary conditions (4.5a) provide Ro 

(4.6) Rn+1 = SOn+1 + 2g(tn+l). 

We next apply the procedure of Section 3 to compute R*. It can be verified that the 
expression (3.3) yields e(22k2) accurate boundary data for this problem, provided 
A1 is evaluated at (p(O, tn), a(O, tn)). The matrix B = Af - I is given by 

[ O -200/(p + 3a) - = 

and the expression (3.6) becomes 

R*= SO* + 2g(tn+112) 

+ Ik 8p0(p + 
ar) (1tn __22___ t 2 [ (3p + a)(p + 3a) )a(o tn)+2( 3p + - ta)] 

So*+ g n -2k0\+ Ik 800(p + a) at (O, tn) 3p + a )2 (3p + a)(p + 3a) J 
where p and a are evaluated at (0, tn). This can be approximated by 

(4.7) Ro = So + 2g(tn + apok)+( 3Sn) )(Son - 

where a = 1/(3Rn + Son). 
In order to find R*1 we approximate p*(-h, tn + k/2). This is equal to 

p*(O, t,1 + k) and proceeding as in Section 3 we find the approximation 

I8aO0(Rn + Son)\ 
(4.8) R*1 = S1* + 2g(tn + 2a0ok) + ( 0Son R?? + Sn - 

with a as above. 
At the right boundary, we still need to specify SO*, SO** and So". Since the 

boundary condition (4.5b) is time-independent, applying the general procedure at 
this boundary yields simply 

(4.9) SO O* = S~n 1 =_ 

Figure 1 shows the results of some computations using the boundary conditions 
(4.6) through (4.9). The following initial and boundary conditions were used: 

u(x,0) =e 

O(x,O) = P0 + ecos(2Tx), 

0(0, t) = 0 + Ecos(0ynt), 

o(1, t) =-0. 
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A=10-2 10-2 k=10-2= 10-3 
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FIGURE 1 

Errors in solutions to the shallow water equations at t= 0.05 with the O(E2k2) 

accurate boundary conditions (4.6) through (4.9) with various values of k and E. Errors 
due to the boundary conditions are present only for x < 0.2. 

Computed solutions were compared with results obtained on a much finer mesh. In 
Figure 1 the 2-norm of the error at each mesh point is plotted at time t = 0.05. In 
each calculation, 40 = 8 and k = h/2, but different values of E and h have been 
used to investigate convergence. Signals propagate at speed = 40/2 = 4, so that at 
the time shown the effects of improper boundary conditions have been felt only for 
x < 0.2 and x > 0.8. For 0.2 < x < 0.8 errors are due solely to the time-split 
method used in the interior. It is this accuracy which we are trying to match at the 
boundary. From Figure 1 it is clear that the boundary conditions have the same 
order of accuracy (60(e2k 2)) as the interior scheme. In fact, the boundary conditions 
(4.9) used at x = 1 are the correct outflow boundary conditions and introduce no 
additional error. At x = 0, the boundary conditions are 0(( e2k2) accurate, but 
apparently have a larger error constant than the interior scheme. In all cases, the 
error near x = 0 is roughly 10 times larger than the error in the interior. 
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FIGURE 2 
Errors in solutions to the shallow water equations at t = 1.0 with the (9 (E 2k2) accurate 
boundary conditions (4.6) through (4.9). 

The striking oscillations near this boundary are due to the fact that the boundary 
conditions (4.6) for RO"1 have much smaller error than the boundary conditions 
derived for R* and R*1. This leads to a larger error in odd-numbered mesh points 
than in even-numbered ones. These oscillations die out as the wave propagates into 
the interior, owing to the dissipative nature of Lax-Wendroff, but die out slowly, 
because Lax-Wendroff is applied only with the small coefficients As. 

The oscillations do not indicate any stability problems. Calculations to much 
larger times show that the method is stable and maintains (9(-2k2) accuracy. For 
example, Figure 2 shows the errors at time t = 1. 

Higher-Order Accuracy at the Boundary. As the results in Figure 1 demonstrate, 
the boundary conditions (4.6) through (4.9) have the same order of accuracy as the 
interior scheme, but may have a larger error constant. To avoid the loss of accuracy 
which this implies, it may be desirable to use boundary conditions with a higher order 
of accuracy. This can be accomplished by retaining more terms in the asymptotic 
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FIGURE 3 
Errors in solutions to the shallow water equations at t = 0.05 with the C9(3k2 + E2k3) 

accurate boundary conditions (4.6), (4.9), (4.10) and (4.11). 

expansion of p*(O, tn + T). After some manipulations involving a*(0, t,, + T), one 
obtains 

p*(0, t? + T) a*(0,?tn + T) + 2g(t, + -r+0 ) + (3p 8+4a(p + a) )a 

( 2 ) (p3 (3p + a) + 3)2) 

Pt at - + 9(E3k2 + E2k3). 
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FIGURE 4 

Errors in solutions to the shallow water equations at t = 1.0 with the (9(83k2 + _2k3) 

accurate boundary conditions (4.6), (4.9), (4.10) and (4.11). 

Boundary conditions which are (9 3k2 + 82k3) accurate are obtained by approxi- 
mating this at T = 4k: 

R = So* + 2g(t,1 + aook) + 400afl(R'O + Son)( - 2Sf'-1 + 
I 

Sn- 2) 

(4.10) + I 
o2 (a2 _ 

-2)(S-n 
- 2So' + Sf- 2) 

-6( a3 R 0- R0) -A(S So } 

where a = 1/(3R" + Son) and 3 = 1/(R n - 3Son) 

The corresponding expression for R*1 is 

R*1 = S1* + 2g(tn + 2aook) + 800afl(R n + Son-3 Son-2So"-f + ISon-2 

(4.11) + 2ko(22 - 2)(Sn- 2Son + sf-2) 
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When the calculations shown in Figure 1 are repeated using these boundary 
conditions, the errors shown in Figure 3 result. Now the errors due to the boundary 
conditions are no larger than the errors inherent in the time-split method. Figure 4 
shows the errors at time t = 1. 

5. Stability. In this section we prove stability of the time-split method for the 
initial-boundary value problem when boundary conditions of the type derived in 
Sections 2 and 3 are used. Stability is proved for the general variable coefficient 
problem, provided the following conditions hold: 

(1) The time-split method is Cauchy stable (see [5] for some general conditions 
under which this holds). 

(2) Boundary conditions specified for inflow variables are independent of values 
of those variables in the interior, i.e., they depend only on outflow variables and the 
given boundary data g(t) (which we will assume is bounded in some appropriate 
Sobolev norm). 

Condition 2 is satisfied by the boundary conditions derived in Section 3, e.g., 
(3.7). Note that for a pure inflow problem, this condition means that the boundary 
conditions must be completely independent of the interior solution, as are, for 
example, the conditions (2.8) and (2.11). For such problems, stability of the 
initial-boundary value problem is easily proved directly from Cauchy stability. This 
result will be shown first and then used together with the theory of Gustafsson, 
Kreiss and Sundstrom [3] to prove stability at an inflow-outflow boundary. 

Stability of the time-split method at an inflow boundary can be proved using the 
following general theorem (having nothing to do with splittings), which states that 
any Cauchy stable scheme is also stable for the initial-boundary value problem, 
provided that the specified boundary data { 2 P= is independent of the interior 
solution. 

THEOREM 5.1. Suppose Q(k) is Cauchy stable. For the initial-boundary value 
problem, define U""+ by 

+1 f Q(k)Un,,'g m >p, 
m t G , + 1 m = 09,19 . .. 9 P . 

Then the approximation is stable in the sense that 

(5.1) 1 Un 2 < K U112 + KTIIG 112 for nk < T, k < ko0o 

where KT and KT are constants depending only on T. 

Here the following norms are used: 

IIU' 11= h E Iu'2 IIGII2 = k E E IPqj 
rn=0 q=1 J=0 

where is the vector norm given below in (5.3). 
Proof. By the Cauchy stability of Q. there exists a constant a and a norm 

equivalent to the 12-norm, such that 

(5.2) IIQ(k)I I21+ k fork<k0. 
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The norm is given by 

IIU"112 = h E Ium I 
I =-00 

with a vector norm equivalent to the 2-norm, i.e., 

(5 .3) |n,2|=|SP 12 

for some nonsingular matrix S. (See, e.g., Chapter 4 of [6].) 
Extend the given initial data { Um)'= to all m by setting UO= 0, m = -1, 

-2,.... Then, solving the quarter-plane problem is equivalent to solving the Cauchy 
problem and then redefining {(j }J = at each step. Specifically, we set 

U$'+ = Q(k)Ugn m= 0, ?1 +?2, .... 

and then take 

(5.4) Um+1'= ( 9 otherwise. 

The resulting { Un, }??=0 constitute the solution of the quarter-plane problem. 
By (5.2), we have 

(5.5) 1 112 (1 + ak) 11 Un 12. 

By (5.4), we obtain the following bound for Un+': 

(5 .6) |la+1 l 11 Cn+ 1 112 + JI Gn 2 

where IIG`'II2 = h _?P jIGn~'I2 
Combining (5.5) and (5.6) gives 

||u'n +'1I2 (1 + ak) 11 Un 112 + JIG n+1I2 

so that by induction we obtain 

11 U2? 1| 
2 

(1 + ak) nil Uo 112 + (1 + ak) qlG n-q 112 
q=O 

n-1 
e aT( IIU 112 + E JI n-q112 

q=O 

for nk < T. Since IIU'Ij n IIU'I2, IIU0II2 -= 1U012, and 
n-1 

n -ql12p 2 h 2 
E JIG hII2 h E E jGjq, I h IIGIIJ 

q=O q=Oj=O 

for nk < T, we obtain the desired bound (5.1) with KT= eaT and KT= 

e T/i/k. E 

To see how this theorem applies to a time-split method, consider the method 

(5.7) U~n+1 = Q1(k)U,', Ujn+1 = Q (k) m 

This splitting is in general only first-order accurate but has the advantage that only a 
single intermediate solution U* is introduced. The technique used to prove stability 
for this splitting readily extends to methods in which additional intermediate 
solutions are present. 
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We assume that the split method is stable on the Cauchy problem, i.e., that 

Q,(k)Qf (k) is a stable operator (see [5]). 
Suppose that the boundary data are of the form 

*n+1 = G *n+1 
, 

j = 0,1 9 
. . 

p9 

(5.8) 117? = m, J 1 
ujni = Gj9 j = 0,19,...,9 P. 

For convenience we have assumed that the same number of boundary conditions are 
needed for both U*n+f1 and Un+1, but this is not essential. The quantities Gj*n+1 and 
G?1 are determined as in Section 2 in terms of the given boundary function g(t) 
and some of its derivatives (say, d derivatives). Suppose that the corresponding 
Sobolev norm of G(t) is bounded by some constant y, uniformly in k and h, 

I= E || 0 j' || < Y 
,J=0 

Then, we have 

(5.9a) III G* 1112 < K1, 

and 

(s.9b) JIG I, < K2, 

for some constants K1 and K2, 
In order to apply Theorem 5.1, we rewrite (5.7) as 

(5.10) K I 0][(=*];? [0 Q (k)][U*]f 

to obtain a Cauchy stable scheme for the "super-vector" (U *, U)T. Note that the 
method is formally implicit even if the original method was explicit, as it must be, 
since the boundary conditions specified for U*n+l1 affect the computation of Un+l. 
The Cauchy stability of (5.10) follows from the Cauchy stability of Qs(k)Qf(k)9 
which gives IU < C U 11, together with 

JJU*nJJ =|fkUn| ClUl, 

where C1 = CIIQf(k)II. Using Theorem 5.1 and the bounds (5.9) we find that (5.10) 
is stable for the initial-boundary value problem and that, in particular, 

IIUn112 < KTIIUO 112 + KT(K1 + K2)Y- 

We now turn to inflow-outflow problems with boundary conditions of the form 
discussed in Section 3. As above, the time-split nature of the scheme can be handled 
by introducing super-vectors. Hence we will only discuss the stability of a general 
one-step scheme in which the inflow variables V and the outflow variables W are 
coupled only through the boundary conditions. As usual, we assume Cauchy stabil- 
ity. Our discussion will be rather brief but similar arguments can be found in 
Goldberg and Tadmor [1], [2]. 

The scheme for W is independent of V and we will assume, as we did in Section 3, 
that the time-split method yields a one-sided scheme for W, so that no boundary 
conditions need be specified. Then, from Cauchy stability, we clearly have 1Wn1W I2< 
1W0 1 2, since the introduction of the boundary does not affect the computation of 
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{ W' 0. Moreover, such a scheme for W is also stable in the sense of Definition 
3.3 of Gustafsson, Kreiss and Sundstrom [3] (we refer to this as GKS-stability). This 
stability condition also requires bounds on a norm of W along the boundary. The 
GKS-stability follows easily from the theory of [3] for a one-sided scheme. 

GKS-stability of the outflow problem is just what we need to prove stability of the 
inflow problem. By assumption, the boundary conditions for V depend only on g(t) 
and on values of W along the boundary, and can be bounded in terms of IIIgll d and 

IIW I,. The former of these is assumed to be uniformly bounded, while the latter is 
bounded by the GKS-stability of W. Theorem 5.1 thus applies to the inflow 
problem, and hence, the entire approximation is stable on the initial-boundary value 
problem. 

These stability results are supported by large-time numerical calculations for a 
wide variety of examples, including the boundary conditions of Section 4 for the 
shallow water equations. 
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